Nonlinear Unsupervised Clustering of Hyperspectral Images with Applications to Anomaly Detection and Active Learning
نویسندگان
چکیده
The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically clustering and segmenting hyperspectral images. In this article, we propose an unsupervised learning technique that combines a geometric estimation of class modes with a diffusion-inspired labeling that incorporates both spatial and spectral information. The mode estimation incorporates the geometry of the hyperspectral data by using diffusion distance to promote learning a unique mode from each class. These class modes are then used to label all points by a joint spatial-spectral nonlinear diffusion process. The proposed method, called spatial-spectral diffusion learning (DLSS), is shown to perform competitively against benchmark and state-ofthe-art hyperspectral clustering methods on a variety of synthetic and real datasets. The proposed methods are shown to enjoy low computational complexity and fast empirical runtime. Two variations of the proposed method are also discussed. The first variation combines the proposed method of mode estimation with partial least squares regression (PLSR) to efficiently segment chemical plumes in hyperspectral images for anomaly detection. The second variation incorporates active learning to allow the user to request labels for a very small number of pixels, which can dramatically improve overall clustering results. Extensive experimental analysis demonstrate the efficacy of the proposed methods, and their robustness to choices of parameters.
منابع مشابه
Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملUnsupervised Geometric Learning of Hyperspectral Images
The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically segmenting and clustering hyperspectral images. In this article, we propose an unsupervised learning technique that combin...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کامل